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DYNAMIC PRESSURE OF A VOLUME WITH VARIOUS
ORIFICES AND OUTGASSING MATERIALS

John J. Scialdone
Research and Technology Office
Test and Evaluation Division

SUMMARY

The dynamic pressure of a spacecraft compartment exposed to
a known external pressure profile is investigated. The compartment
contains outgassing materials and has known orifice passages., Out-
gassing materials are: silicone rubber, epon, PTFE, mylar, epoxy,
polyurethane, and silastic. The passages considered have areas of
.01, .1, and 1.0 cm2, A computer program is used to obtainthe
internal dynamic pressure. The results have been generalized by
grouping in terms of a pumping time constant, the outgassing rate
of the material at 1-hour vacuum exposure, and a quasi-steady pres-
sure corresponding to the outgassing rate and the orifice molecular
flow rate, Additionalplots includedhere canbe used to obtainpres-
sures and times for other systems when the geometry and the be-
havior of the outgassing material are known, The plots canbe used
to identify objectionable pressure time conditions in a spacecraft
and to indicate ways to avoid them by appropriate adjustment of
parameters. The results obtained by the computer program have
been compared to those obtained experimentally.
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DYNAMIC PRESSURE OF A VOLUME WITH VARIOUS
ORIFICES AND OUTGASSING MATERIALS

John J. Scialdone
Test and Evaluation Division

INTRODUCTION

A study has been made of the transient pressure in a volume containing an
outgassing material. The study is a part of the development of an analytical tool
to calculate the pressure versus time for each of the volumes of a multivolume
system (reference 1) such as a spacecraft. A mathematical description was
developed for many volumes arranged in series, in parallel, or in combination.
The volumes were assumed to be at constant temperature, containing materials
outgassing with known characteristics, connected with passages of different
geometry, and exposed to a general time-varying pressure environment.

As a result, a computer program was developed and is now being checked
and debugged. The program will provide the numerical solution to the set of
differential equations with variable coefficients representing the viscous, in-
termediate, and molecular flow-passage conductances. In this process, several
computations have been made and some of the results are presented here.

Although the computations cover three regions of flow, the curves presented
here have been grouped according to the molecular flow regime time constants
and the outgassing characteristics of the materials. It is shown that with para-
meters and plots derived from computed profiles, one may estimate the pres-
sure versus time for other arrangements of volume which has an orifice and
contain an amount of outgassing material. This may provide an estimate of the
balanced pressure and the time to reach them without performing a computer
calculation or an actual test. In addition, pressure profiles of computed and
experimental results have been superposed on the same graphs and compared.

Volume-Orifice Outgassing Material Combination Systems

The pressure profiles for the cases listed in Table 1 have been examined.
These volume-orifice-material combinations were assumed to be exposed to a
pressure-time environment obtained experimentally in an empty bell-jar pump-
ing system used for investigation of corona (reference 2),

The figures in this document are graphs of the results of the computation.
The curves, which were produced separately for each case, have been super-
posed for convenience. A sample of the data input needed for the computation
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and the corresponding numerical and graphical results appears in the Appendix.
Outgassing characteristics for the material and its surface area are given input
quantities. The outgassing characteristics were obtained from data available in
literature (references 3 and 4) extrapolated to provide data for times less than

1 hour. The legend for the conductance (type 1) specifies that the passage is an
orifice. Other passage geometries can be specified.

Parameters of the Evaluated Systems

The computed pressure profiles for one-liter volume with orifice passages,
outgassing areas, and outgassing materials as indicated in Table 1 are
shown in Figures 1, 2 and 3. These profiles show that the pressure drops very
rapidly and within a short period of time to a quasi-steady value. This is the
region of viscous and transitional flow regime. In this region, the relations
expressing the passage conductance are nonlinear and dependent on pressure and
viscosity (Ref. 1), Beyond this region, the flow is molecular and the conductance
depends only on geometry. The pressure and the corresponding time for a
system being evacuated are mainly a function of the parameters characterizing
the flow in the molecular flow regime. In view of this, we have grouped the
curves in accordance with certain parameters in the molecular region of the
curves which are amenable to generalization, namely, molecular time constant
7, outgassing material gas load at 1 hour vacuum exposure Q,, and a quasi-
steady pressure P .

The time constant, which relates the size of the volume to the pumping
speed in the molecular flow region of the passage, represents the time needed
for the pressure to drop to 1/e = 0.368 of the initial pressure and is given in
reference 4 as

\Y
T = g‘(sec), 1)

where V (liter) is the volume of the container to be evacuated and S (lit/sec) is
the pumping speed of the passage. The pumping speed for an orifice of area A

(cm?) in the molecular flow region (corresponding to a pressure of 10 2103
torr for the present orifice diameters and air at 20°C), is a constant:

S =11.6A (lit/sec). 2)

The time constant, which presupposes molecular flow with constant conductance
and no source of gas in the volume being evacuated, results from the solution

d
of the linear differential equation expressing the flow balance -Va—% = SP, in
the molecular region:
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Figure 1. One-Compartment Pressure Simulation (7=0.1 sec)
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Figure 2. One-Compartment Pressure Simulation (7= 1.0 sec)
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Figure 3. One-Compartment Pressure Simulation (7= 10 sec)
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This time constant can be visualized as the slope of the log of the pressure
profile at time zero.

Where a constant source of gas Q, (torr lit/sec) exists, such as that pro-
vided by a leak into the volume, the differential equation given in reference 4 is:

dp _
Vie T SP-Q, (4)
and its solution is
_S Q
_ vt L
P = Pie® +75. (5)

This equation shows that, when the first term becomes very small, the second
term controls the pumpdown. For Q, constant, an equilibrium pressure,

P75 (6)

would be obtained. The pressure represents the condition of equilibrium be-
tween the inflow leakage, Q, and the outflow through the orifice, SP,. For the
present cases, the in-leakage is represented by material outgassing not at con-
stant rate, but at a decreasing function of time. The pressure consequently
decays slowly. However, we can define a quasi-steady-state gas leak as one
that is produced by the material after 1 hour of outgassing in vacuum and then
use the corresponding quasi-steady-state equilibrium pressure as one of the
parameters describing the system. This pressure would be:

Q A Qg
PL =75 " 75 @
where A, (cm?) is the surface area of the outgassing material; Qg <'“St§§_(1:;12>

is the material rate of gas output after 1 hour of vacuum exposure, as given in
literature (references 3 and 4); and S (lit/sec) is the pumping speed for the



orifice, as given by equation (2). This pressure is not the ultimate pressure
obtained in the volume but is a condition of slowly decaying pressure. Table 1
lists the geometric data, outgassing material, characteristic rate at 1 hour Q,
corresponding load Q; rate, calculated pumping speeds S, and finally, the re-
sulting parameter 7 and P, .

APPLICATION OF THE PARAMETRIC PRESENTATION OF THE COMPUTER
RESULTS

The primary use of this program is to obtain pressure profiles (such as
those of Figures 1, 2, and 3, or for a more complicated system, as those of
Figure 4 for a three-volume system) without the necessity of running an actual
test. Another use is to establish times during which certain spacecraft opera-
tions which depend on pressure can be safely performed. Any variation in flow
passage, temperature for the entire system, type of gas, material contained in
the volumes, and leakages can be included and the results checked for any envi-
ronment. This calculation provides an indication of pressures for volume
arrangements where gages cannot be installed. Where actual pressures-versus-
time data for a system are known from experiments, the behavior of the ma-
terial can be determined by comparing the experimental results with the analyt-
ical (i.e., an equivalent pumping speed for the system can be found). The equiva-
lent pumping speed can then be used to check other conditions.

For the present analysis, the curves of Figures 1, 2, and 3 can be used to
estimate the pressure versus time for a system having time constants +, ob-
tained from equation (1), between 0.1 sec and 10 sec, with outgassing quasi-
steady pressures P; (equation (7)) between 3.3 X 10°3 torr and 9.55 X 10°7 torr,
and gas load Q[ between 3.22 X 10-% and 2.4 X 10-® (torr lit/sec). This was
accomplished by providing plots as in Figures 5 and 6.

Figure 5 plot (obtained from curves of Figures 1, 2, and 3) shows the quasi-
steady pressure P, versus the time constant for the outgassing material and
corresponding gas loads investigated here.

Figure 6 plot shows tke pressure versus time obtained by plotting the time
to reach the quasi-steady pressure for the three time constants 7 = 0.1, 7+ = 1,
and 7= 10 sec.

The information from Figures 5 and 6 and from the previous equations will
periiit an estimate of the pressure versus time for a single-volume system by
using either of the following procedures:
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e For a single-volume system without outgassing: Calculate the pump-
ing speed for the orifice, S (equation (2)), and the time constant, +
(equation (1)); estimate the time to obtain P from the solution of

760

equation (3) valid in the molecular region,i.e., t =7 In, 5

For a case in which the time t is known to reach pressure P for a

system having time constant 7, the time t, to reach the same pressure

for another system having a time constant r, will be

e Tor a single-volume system with outgassing: Calculate the pumping
speed and the time constant as in preceding paragraph. Obtain data
on the outgassing material, Q; (reference 3), and calculate QL knowing
the area of outgassing using equation (7). From Figure 5, or by cal-
culation, obtain quasi-steady pressure P ; with this information esti-
mate from Figure 6 the time needed to obtain pressure P, .

Comparison of Experimental and Computed Results

As indicated in the introduction, this analysis resulted from developmental
work on a computer program, The choice of the dimensions and outgassing ma-
terial in each system resulted from the desire to check results of experimental
tests performed in the laboratory in order to establish container pressure and
the corresponding times of onset and extinction of corona for electrodes in a
container (Ref. 2). The plots of Figures 7, 8, and 9 show superposed the results
obtained experimentally and those obtained with the computer program. Fig-
ure 10 is a schematic of the pressure-time setup and the orifice construction.
The one-liter volume was fitted with one of three different orifices connecting
the compartment to the simulated space environment of the 12-inch diameter by
18-inch bell jar. The evacuation was provided by a 140-cfm mechanical roughing
pump and 2-1500 1/sec oil-diffusion pumps baffled with liquid nitrogen. The
bell-jar pressure profile simulates the launch and the orbital phases of a space-
craft. It approximates the pressure-time curve of a Thor-Agena B rocket carry-
ing a 1000-pound payload into a 160-mile orbit. A Hastings thermocouple pres-
sure gage and a nude ionization gage were used to record the pressure in the
compartment, The pressure in the bell jar was recorded by a Hastings thermo-
couple gage and an ionization gage. The polymeric materials included in the
compartment, selected as being typical encapsulants used in flight systems, were:
Eccofoam FPH, 4 pounds/cubic foot; silicone rubber, RTV 11; and epoxy, Biggs
823 resin, The test specimens of these materials were produced in the laboratory

12
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in accordance with accepted spacecraft application techniques. The Eccofoam
and the RTV samples had a surface area of 140 cm?, and the epoxy sample
consisted of a conformal coating about 0.015 inch thick over an aluminum

tube with a surface area of 120 cm?. The coating was vacuum-processed while
curing. The RTV samples were outgassed for 24 hours before the test. Non-
outgassed RTV caused fluctuating jonization-pressure gage readings in the

10 "* torr region. This was attributed to contamination of the gage elements
which rendered the gage useless for pressure measurements. The 24-hour
outgassing phase is, however, typical of space hardware exposure in environ-
ment-chamber tests. The pressure vs. time in the bell jar did not follow the
same profile in each test but showed a variation of about one-half decade be-
cause of the influence of the variable gas load and orifice sizes. The tempera-
ture in these tests was about 70°F.

Figures 7, 8, and 9 show that the computer results compare favorably with
the experimental results. The difference (values in the same decade) is justi-
fied by: the uncertainties of reproducing the same pressure profiles in the
vacuum jar for different runs; the difficulty of gage-reading and gage errors;
surface-handling of materials previous to vacuum exposure; and the material
properties used in computation which may differ from those used in testing.
For the computer, a mathematical description of the outgassing material is
used. The data for this representation are obtained from the literature and,
unless data are available on the specific material being tested, divergence may
be expected between test and analytical results. However, comparison of the
experimental and analytical results indicates a difference in the same decade.
Better definition of the materials should produce closer results, if needed.
Improvements in computed results are also expected when the computer program
is modified to handle temperature gradients between compartments. At present
the computer program is written for constant temperature.

CONCLUSION

A successful computer program has been developed which provides the
pressure profile within a volume with material outgassing. The program is
general and can be used for many interconnected volumes with various types
of passages and containing materials outgassing in a known manner such as in
a spacecraft. The present application considers one-liter volume with 0.975,
0.0914, and 0.00862 cm? orifice including each of these materials used in space
applications: silicone rubber, epon, PTFE, mylar, epoxy, polyurethane, and
silastic. The pressure profiles obtained with the computer have been grouped
according to a molecular flow time constant of 0.1, 1.0, and 10 seconds which
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relates the volume and the orifice sizes. Two additional parameters have been
introduced to offer a generalization of these results: one relates the outgassing
material flow rate at 1 hour; the other relates a quasi-steady pressure corre-
sponding to that flow rate. A plot showing the quasi-steady-pressure variation
with the system time constant and the outgassing rates was obtained from the
calculated profiles. Another plot was drawn to show the time required to obtain
the quasi-steady pressure for the three time constants.

It has also been shown that, given a knowledge of the material behavior and
the geometry of the system, these two plots will enable one to obtain informa-
tion on pressure and corresponding time. With the parameters introduced here,
these plots can be used as a tool to define objectionable conditions, or to avoid
those conditions with appropriate changes in volume and/or passage. In addi-
tion, pressure versus time can be obtained for a spacecraft system. The re-

sults of computer program, as shown by comparison with experimental data,
can be reliably used.
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TYPICAL COMPUTER INPUT DATA AND CORRESPONDING SOLUTION
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